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Note 

Dynamical Interactions of 
Superconducting Flux Vortices* 

We perform a numerical simulation of the dynamical interactions of magnetic 
flux tubes (“vortices”) in a superconductor. The system is described in the 
Ginzburg-Landau theory by the action 

S=~d4~I-(VY~)t(VII(P)-~((p*(p-~z)2-tFlrrFilY . 
1 

(1) 

Here q(x) is a complex scalar field representing the Fermi gap parameter of the 
superconductor, F,, is the electromagnetic field strength tensor, 

Fpv = QL(x) - L$(x) 

(2) 

and the gauge-covariant derivative is 

y@(x) = QP(x) - ieA,(x) Y-e). (3) 

The potential for the q(x) field is the Higgs potential (or “Mexican hat” poten- 
tial) shown in Fig. 1. The vacuum (lowest energy state) of this system is degenerate 
and consists of the set of points q$x)=aeiso for any fixed oO. Since the vacuum is 
topologically non-trivial it is possible to create topological defects (called “vortices”), 
where the q(x) field “winds” around the central maximum of the potential like 

cp(r, 0) =f(r) eine. (4) 

Because q(x) must be continuous n must be an integer and q(x) must vanish at the 
center of the vortex. The phase and magnitude of q(x) near an n = 1 vortex are 
shown in Fig. 2. Outside of the vortex the electromagnetic gauge symmetry is 
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FIG. 1. Higgs potential for the scalar field q(x). 

broken and the material is superconducting. Inside the vortex the gauge symmetry 
is restored and there is a magnetic field in the z direction. The total magnetic flux 
through the vortex is quantized and is given by 

Q(B) = 2m/e. 

The vortices therefore represent quantized tubes of magnetic flux trapped in a 
superconducting medium. 

From a previous variational calculation of the interaction energy of stationary 
vortices [l] it was known that for the scalar field coupling constant I < 2 (corre- 
sponding to a Type I superconductor) vortices attract each other, while for il> 2 
(corresponding to a Type II superconductor) they repel. At the critical coupling 
1= 2 it was shown that isolated vortices do not interact, but it was not known if 
critically coupled vortices when brought together would interact or would simply 
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FIG. 2. Phase and magnitude of q(x) near a vortex. 
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pass through each other as solitons. Our simulation shows that critically coupled 
vortices do in fact interact non-trivially and are therefore not solitons. 

To simulate the system on a computer we discretize the action using techniques 
from lattice gauge field theory [2]. The field cp(x) is represented by the variables 
rp,, which live on the sites of the lattice, while the gauge fields are represented by 
the variables @, which live on the links of the lattice. To covariantly transport cpX 
across a link in the forward direction one must multiply by exp(i@), so the lattice 
version of the covariant derivative is 

V,v,=i Cexp(-iWcp.+,-cp.1. (6) 

With rrr and Ef: the momenta conjugate to the fields cpX and 0: and A, repre- 
senting A,(x) the Hamiltonian for the discretized system is 

H=xad n,(&tI - ieA,qJ) + nL($t, + ieA,qL) 
x 

+ $C (E’,)‘+C (ViVx)‘(ViVx) + dt’~L(~x--*)* 
I I 

+$ ,~,[1-cos(8t+B:+i-8:+i-Bl)] 
1 +J 

+ixE:(Ax+i-A.) 
I 

The virtue of using the lattice gauge field theory formalism is that it preserves the 
local gauge symmetry of the system. The Hamiltonian above is invariant under the 
transformation: 

with xX an arbitrary function of position. As a consequence of this symmetry the 
system obeys the constraint 

(9) 

which is the lattice version of Gauss’ law. 



484 MORIARTY, MYERS, AND REBBI 

The dynamics of the system are described by Hamilton’s equations for H in 
Eq. (7). The equations of motion are 

dE; -= 
dt 

--[C’PreXp(-iB:)p,+i--~t+ieXp(i81)rp,l 

(lob) 

In obtaining these equations we have used the gauge symmetry of the system to 
impose the condition A, = 0. This both simplifies the calculations and makes the 
Hamiltonian in Eq. (7) manifestly positive-definite. 

Figures 3 through 11 show the results of the simulation of a head-on collision 
between two critically coupled vortices with A= 2 and a = 0.33. We plot the total 
energy density of the system as a function of x-y position at succesive times. The 
initial configuration is such that the vortices approach each other in the x direction 
at 0.5 times the speed of light. As the figures show the two vortices come together 
and then separate at right angles, clearly demonstrating that there is a non-trivial 
interaction between them. When two vortices are put in the same positions but 
without any initial velocity they remain where they are and neither attract nor repel. 

The same set of equations in three dimensions describes the dynamics of “cosmic 
strings,” which are thin tubes of false vacuum that may have formed during a phase 
transition in the early cosmological evolution of the universe [3]. It is an important 
open question as to whether crossing cosmic strings simply pass through each other 
or whether they “intercommute” (i.e., trade ends). If, as is often assumed, cosmic 
strings intercommute then they can form loops. These loops would be density 
perturbations in the early universe around which matter would accrete, leading to 
the formation of galaxies and clusters of galaxies. An interesting property of these 
strings is that they are scale-invariant, so loops of all sizes would form, leading to 
a scale-invariant distribution of galaxies and clusters of galaxies, which matches 
observation. If cosmic strings do not intercommute then there is no presently 
known explaination for the observed scaling distributions of galaxies. We intend to 
use our codes to simulate the interactions of cosmic strings to determine whether 
or not they intercommute. 
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FIG. 3. Energy density of two colliding vortices; t = 0.00. 
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FIG. 4. Energy density of two colliding vortices; t = 0.94. 
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FIG. 5. Energy density of two colliding vortices; I = 1.89. 
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FIG. 6. Energy density of two colliding vortices; f = 2.83. 

TOTAL ENERGY t=3.71404 

FIG. 7. Energy density of two colliding vortices; I = 3.77. 
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FIG. 8. Energy density of two colliding vortices; t = 4.72. 
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FIG. 9. Energy density of two colliding vortices; t = 5.66. 
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FIG. 10. Energy density of two colliding vortices; t = 6.61. 

TOTAL ENERGY 
0.4 

-l 

0.3 

0.2 

0.1 

0.0 

FIG. 11. Energy density of two colliding vortices; r = 7.55. 
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